Incorporating Graph-Based Models in a Deep Learning Framework for Operational Face Recognition
In classical face recognition, an input probe image is compared against a gallery of labeled face images in order to determine its identity. In most applications, the gallery images (identities) are assumed to be independent of each other, i.e., the relationship between gallery images is not exploited during the face recognition process. In this work, we propose a graph-based approach in which gallery images are used to generate a powerful network structure where the nodes correspond to individual identities (and consist of face images as well as biographic attributes such as gender, ethnicity, name, etc.) and the edge weights define the degree of similarity between two such nodes.
Learn More